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We consider the steady two-dimensional thin-film flow of a viscoplastic material,
modelled as a biviscosity fluid with a yield stress, round the outside of a large
horizontal stationary or rotating cylinder. In both cases we determine the leading-
order solution both when the ratio of the viscosities in the ‘yielded’ and ‘unyielded’
regions is of order unity and when this ratio approaches zero in the appropriate
distinguished limit. When the viscosity ratio is of order unity the flow consists, in
general, of a region of yielded fluid adjacent to the cylinder and a region of unyielded
fluid adjacent to the free surface, separated by the yield surface. In the distinguished
limit the flow consists, in general, of a region of yielded fluid adjacent to the cylinder
whose stress is significantly above the yield stress and a pseudo-plug region adjacent
to the free surface, in which the leading-order azimuthal component of velocity varies
azimuthally but not radially, separated by the pseudo-yield surface; the pseudo-plug
is itself, in general, divided by the yield surface into a region of yielded fluid whose
stress is only just above the yield stress and a region of unyielded fluid adjacent to
the free surface whose stress is significantly below the yield stress. The solution for
a stationary cylinder represents a curtain of fluid with prescribed volume flux falling
onto the top of and off at the bottom of the cylinder. If the flux is sufficiently small
then the flow is unyielded everywhere, but when it exceeds a critical value there is a
yielded region. In the distinguished limit the yielded region always extends all the way
round the cylinder, but the unyielded region does so only when the flux is sufficiently
small. For a rotating cylinder a film with finite thickness everywhere is possible only
when the flux is sufficiently small. Depending on the value of the flux and the speed of
rotation the flow may be unyielded everywhere, have a yielded region on the right of
the cylinder only, or have yielded regions on both the right and left of the cylinder. At
the critical maximum flux the maximum supportable weight of fluid on the cylinder
is attained and the pseudo-yield, yield and free surfaces all have a corner. In the
distinguished limit there are rigid plugs (absent in the stationary case) near the top
and bottom of the cylinder.

1. Introduction
A great number of materials, ranging from many of the paints and inks used in

industrial coating applications to numerous muds and lavas found in geophysical
contexts, are ‘viscoplastic’, that is to say they behave essentially like rigid solids
when subjected to a small stress but flow readily (‘yield’) when subjected to a large
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stress. Various constitutive equations have been proposed to model these viscoplastic
materials; for an overview of such models and the types of flow problems that have
been considered see the comprehensive review articles by Bird, Dai & Yarusso (1983)
and Barnes (1999).

Much of the literature involving flow of viscoplastics has concentrated on the
idealized case of a ‘Bingham’ material, that is, a material that behaves like a perfectly
rigid solid ‘plug’ unless the stress exceeds the yield stress, but otherwise behaves like a
viscous fluid. For example, Bird et al. (1983) considered rectilinear flow of a Bingham
material with rigid plugs in various geometries, Lipscomb & Denn (1984) and Tichy
(1991) considered thin-film flow in various confined geometries, while Liu & Mei
(1989, 1994), Huang & Garcı́a (1997) and Balmforth & Craster (1999) investigated
thin-film flow down an inclined plane. A generalization of the Bingham model is the
Herschel–Bulkley model, and thin-film flow of a Herschel–Bulkley material down an
inclined plane has been investigated by Coussot (1994), Coussot & Proust (1996), Di
Federico (1998), Huang & Garcı́a (1998) and Balmforth & Craster (1999).

Recent advances in experimental techniques (see, for example, Barnes 1999) have
revealed that the concept of a well-defined yield stress below which no flow occurs
enshrined in the Bingham model is rather idealized, and that typically materials flow
very slowly even at very low stresses, that is, there is in reality no well-defined yield
stress. Nevertheless, the Bingham model has proved to be a very useful one in a
wide range of practical applications. However, even in steady two-dimensional flow,
the use of the Bingham model for thin-film flows is not without its complications.
As many authors have pointed out, a naive treatment of non-rectilinear flows gives
rise to the so-called ‘Bingham paradox’, namely that regions of material that appear
to have a stress below the yield stress (and which are therefore supposed to behave
like a rigid plug) are found to be deforming. Evidently, as Lipscomb & Denn (1984)
pointed out, perfectly rigid plugs are possible only in strictly rectilinear flow. An
additional complication of using the Bingham model is that by assuming that any
unyielded regions are perfectly rigid we, in general, deprive ourselves of any means
of determining the stresses within them (Walton & Bittleston 1991; Wilson 1999).

In an important recent paper Balmforth & Craster (1999) demonstrated that the
earlier work by Walton & Bittleston (1991) on rectilinear axial flow of a Bingham
material through a narrow eccentric annulus contained the essence of the resolution
of the Bingham paradox. Balmforth & Craster (1999) showed that, when inter-
preted correctly, the Bingham model does in fact lead to a consistent description
of non-rectilinear thin-film flow. In particular, Balmforth & Craster’s (1999) careful
asymptotic analysis of non-rectilinear thin-film flow of a Bingham material down
an inclined plane in the limit ε → 0, where ε (defined in § 3) is the aspect ratio
of the film, reveals that the solution consists of two regions, namely a region of
yielded fluid adjacent to the substrate (called the ‘fully plastic’ region by Balmforth
& Craster 1999) in which the stress is significantly (specifically O(1)) above the yield
stress, and a ‘pseudo-plug’ region of yielded fluid adjacent to the free surface in
which the leading-order longitudinal component of velocity varies longitudinally but
not transversely and in which the stress is only just (specifically O(ε)) above the
yield stress; these two regions are separated by a ‘pseudo-yield’ surface (called the
‘fake yield surface’ by Balmforth & Craster 1999). Since in the non-rectilinear flow
considered by Balmforth & Craster (1999) the stress in the fluid is everywhere above
the yield stress the entire flow is yielded and hence the apparent paradox disappears.
Moreover, this analysis also reveals that the pseudo-yield surface is precisely the
same as the ‘yield surface’ calculated from the naive approach, and so the apparently
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paradoxical solutions obtained by earlier authors can in fact be justified by identifying
the ‘unyielded regions’ as pseudo-plug regions and the ‘yield surfaces’ as pseudo-yield
surfaces. Similar pseudo-plug regions were also obtained by O’Donovan & Tanner
(1984) in their numerical investigation of axisymmetric squeeze flow, as well as by
Walton & Bittleston (1991) and Beverly & Tanner (1992) in their analytical and
numerical studies of rectilinear axial flow in a narrow eccentric annulus.

Wilson (1999) independently performed a more general version of Balmforth &
Craster’s (1999) calculation using the more realistic biviscosity model (which permits
flow below the ‘yield stress’ and in which the stresses within any unyielded regions
are determined) instead of the idealized Bingham model. Wilson’s (1999) study of
pressure-driven flow in a non-parallel-sided symmetric channel resolves the difficulties
in the earlier (incomplete) analyses by Liu & Mei (1990), Wilson (1993) and Burgess &
Wilson (1996) of, respectively, flow down an inclined plane, axisymmetric squeeze-film
flow between parallel discs and axisymmetric spin coating. Specifically, Wilson (1999)
adopted a biviscosity model with a yield stress from which the familiar Newtonian
model is recovered in the case λ = 1 and the Bingham model is recovered in the limit
λ→ 0, where λ (defined in § 2) is a ratio of viscosities in the ‘yielded’ and ‘unyielded’
regions, which are separated by the ‘yield surface’ on which the stress is equal to the
yield stress. In particular, Wilson (1999) investigated the distinguished limit λ → 0
(the Bingham limit) and ε → 0 (the thin-film limit) in which k = ε/λ = O(1). In this
limit the solution again has, in general, a yielded region adjacent to the substrate in
which the stress is significantly (specifically O(1)) above the yield stress, separated
by a pseudo-yield surface from a pseudo-plug region adjacent to the free surface in
which the leading-order longitudinal component of velocity varies longitudinally but
not transversely. However, unlike in the case of a Bingham material, the pseudo-plug
is now, in general, divided into a yielded region adjacent to the pseudo-yield surface
in which the stress is just (specifically O(ε)) above the yield stress, and an unyielded
region adjacent to the free surface in which the stress is significantly (specifically O(1))
below the yield stress, these two regions being separated by the yield surface. The
location of the yield surface (but not that of the pseudo-yield surface) depends on
k. In the limit k → 0 (corresponding to taking the thin-film limit ε→ 0 and then the
Bingham limit λ→ 0) the yield surface coincides with the pseudo-yield surface and so
the yielded part of the pseudo-plug is absent, while in the limit k →∞ (corresponding
to taking the Bingham limit λ→ 0 and then the thin-film limit ε→ 0) the unyielded
part of the pseudo-plug is absent and the results of Balmforth & Craster (1999) are
recovered. It is, however, important to realize that Balmforth & Craster’s (1999) work
shows that it is not necessary to ‘relax’ the Bingham model in this or any other way
in order to resolve the Bingham paradox.

We remark that Balmforth & Craster’s (1999) and Wilson’s (1999) analyses also
provide the correct solution to the problem of thin-film flow of a Bingham material
in a symmetric contraction treated by Gans (1999). Ross (2000) gives details of this.

In this paper we consider the steady two-dimensional thin-film flow of a viscoplastic
material, modelled as a biviscosity fluid with a yield stress (described in § 2), round
a large horizontal stationary or rotating cylinder. The corresponding Newtonian
problems were investigated by Nusselt (1916a, b), Moffatt (1977) and Duffy & Wilson
(1999). The biviscosity model used by Wilson (1999) is preferred to the idealized
Bingham model used by Balmforth & Craster (1999) first because it is a more realistic
model for real viscoplastic materials and secondly because it allows the stresses within
any unyielded regions to be determined without making any additional assumptions.
In § 3 we obtain the leading-order solutions in the case λ = O(1) as ε → 0 and in
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Figure 1. The biviscosity model.

the distinguished limit λ → 0 and ε → 0 in which k = ε/λ = O(1). We then employ
these solutions to describe flow round a stationary cylinder in § 4 and § 5, and round
a rotating cylinder in § 6 and § 7. We summarize our results in § 8.

2. A biviscosity fluid
The governing equations representing conservation of mass and balance of mo-

mentum for steady slow flow of an incompressible fluid with constant density ρ take
the form

∇ · u = 0, ∇ · σ + ρg = 0, (1)

where u, σ and g denote the fluid velocity, stress tensor and acceleration due to
gravity, respectively. In the present work we shall consider a biviscosity fluid with a
yield stress whose constitutive law is given by

σ = −pI + σ′, where σ′ =


2µ1e, τ 6 τy,

2

(
µ2 +

τ0

q

)
e, τ > τy,

(2)

in which p is the pressure, I is the identity tensor, e is the rate-of-deformation tensor,
q is the local shear rate and τ is a scalar measure of the local stress, given by

e = 1
2
[(∇u) + (∇u)T ], q = [2 tr(e2)]1/2, τ = [ 1

2
tr(σ′2)]1/2. (3)

The other five quantities in (2), namely µ1, µ2, τ0, τy and qy, are constant material
parameters related by τy = µ1qy = µ2qy + τ0 (so that only three of the five are
independent). The parameters µ1 and µ2 are viscosities, and τ0 and τy are measures of
stress; τy is the yield stress, corresponding to the shear rate qy. The relation between
τ and q is given by τ = µ1q when q 6 qy and τ = µ2q+ τ0 when q > qy, and is shown
in figure 1. We note that τ0 = τy(1 − λ), where the viscosity ratio λ is defined by
λ = µ2/µ1. For τ 6 τy the fluid is ‘unyielded’ and behaves like a Newtonian fluid with
a ‘high’ (constant) viscosity µ1, while for τ > τy the fluid is ‘yielded’ and behaves like
a viscous fluid with a ‘low’ (shear-rate-dependent) viscosity µ2 + τ0/q. In the present
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viscoplastic context µ2 6 µ1 and so 0 < λ 6 1. Any surface on which τ = τy which
separates yielded and unyielded regions is called a ‘yield surface’. The familiar case
of a Newtonian fluid with constant viscosity is recovered in the case λ = 1 and the
Bingham model is recovered in the limit λ→ 0.

3. Problem formulation
Consider the steady two-dimensional flow of the viscoplastic material described in
§ 2 round the outside of a large horizontal cylinder of radius R. We shall consider
both the case when the cylinder is stationary and the case when it is rotating in
a counter-clockwise sense about its horizontal axis with constant angular speed Ω
(so that the circumferential speed is U = RΩ). Hereafter all quantities will be made
dimensionless using the radial length scale hy = τy/ρg, the azimuthal length scale R,
the azimuthal velocity scale ρgh2

y/µ2 and the stress scale τy. Provided that the fluid
film is sufficiently slender, that is, provided that the aspect ratio of the film ε = hy/R
is sufficiently small, the leading-order approximation to the local behaviour is simply
that of rectilinear flow with volume flux Q on a locally planar substrate inclined at
an angle α = π/2 − θ to the horizontal and moving parallel to itself with constant
speed U, where θ is the conventional polar angle measured anti-clockwise from the
horizontal, as shown in figure 2. Referred to the local Cartesian coordinate system
Oxyz shown in figure 2, the substrate has velocity U > 0 in the direction Ox and the
local components of the fluid velocity in the directions Ox and Oz are denoted by u
and w respectively.

3.1. The solution in the case λ = O(1)

When the viscosity ratio λ is of order unity as the aspect ratio ε approaches zero
equations (2) and (3) give τ = |σxz| and q = |du/dz| at leading order. In general, the
solution in this case comprises a region 0 6 z < H of yielded fluid (region 2) and
a region H 6 z 6 h of unyielded fluid (region 1), where the leading-order locations
of the yield surface and the free surface are denoted by z = H(θ) and z = h(θ),
respectively. The geometry of the local problem in this case is shown in figure 2(a).
We define the term ‘yielded zone’ to correspond to those values of θ at which region
2 is present; at other values of θ (the ‘unyielded zone’) region 2 is absent and the
fluid is unyielded across the entire thickness of the film.

At leading order in the yielded zone the governing equations (1) with the constitutive
equation (2) reduce to simply

u1,x + w1,z = 0, λ−1u1,zz = cos θ, p1,z = − sin θ (4)

in region 1 and to

u2,x + w2,z = 0, u2,zz = cos θ, p2,z = − sin θ (5)

in region 2. Equations (4) and (5) are subject to the boundary conditions p1 = 0 and
u1,z = 0 on z = h, u2 = U on z = 0, and u1 = u2, p1 = p2 and λ−1u1,z = u2,z − (1− λ)S
on z = H , where S = −sgn(u2,z); these represent continuity of normal stress and
tangential stress on the free surface, no slip on the cylinder, and continuity of
velocity, normal stress and tangential stress at the yield surface respectively. The
yield condition, τ = 1 on z = H , gives |u1,z| = |u2,z| = λ on z = H . Thus we obtain
the hydrostatic pressure distribution p = (h − z) sin θ throughout the fluid, and the
velocity distributions

u1 = U − 1
2
λ cos θ(2h− z)z − 1

2
(1− λ)[(2h−H) cos θ − 2S]H, H 6 z 6 h, (6)
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Figure 2. Locally rectilinear flow on a locally planar substrate inclined at an angle α = π/2− θ to
the horizontal moving parallel to itself with speed U when (a) λ = O(1), and (b) in the distinguished
limit λ→ 0 and ε→ 0 with k = ε/λ = O(1).

u2 = U − 1
2

cos θ(2h− z)z + S(1− λ)z, 0 6 z < H, (7)

in regions 1 and 2 respectively. The volume flux of fluid, Q, is therefore

Q = Uh− 1
3

cos θ[λ(h−H)3 + h3 − (h−H)3]− 1
2
S(1− λ)(H − 2h)H, (8)
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and the yield condition gives

1 = (h−H)| cos θ|. (9)

From (2) the stress throughout the fluid is given by τ = |σxz| = (h − z)| cos θ|, from
which it can be shown that S = −sgn(u1,z) = sgn(cos θ), so that the velocity gradient
across the entire thickness of the film takes the opposite sign from cos θ.

At leading order in the unyielded zone we recover the appropriately non-
dimensionalized version of the familiar solution for a Newtonian fluid with viscosity
µ1, namely

u = U − 1
2
λ cos θ(2h− z)z, Q = Uh− 1

3
λ cos θ h3, (10)

as given, for example, by Moffatt (1977).
Note that H and h depend on θ only through cos θ and hence have top-to-bottom

symmetry.

3.2. The solution in the distinguished limit k = ε/λ = O(1)

In the distinguished asymptotic limit in which both the viscosity ratio λ and the
aspect ratio ε approach zero with k = ε/λ = O(1) the situation is somewhat more
complicated. As Wilson (1999) describes, in general the solution in this limit has three
regions rather than the two regions present in the case λ = O(1). In 0 6 z < H∗ (region
2) the fluid is yielded with uz = O(1), in H∗ 6 z < H (region 3) the fluid is yielded
with uz = O(ε) and in H 6 z 6 h (region 1) the fluid is unyielded with uz = O(ε),
where z = H(θ) and z = h(θ) are the yield surface and free surface encountered
previously, and z = H∗(θ) is the ‘pseudo-yield surface’ at which uz changes from O(ε)
to O(1). The stress is O(1) below the yield stress in region 1 and O(1) above the yield
stress in region 2, but only O(ε) above the yield stress in region 3. The geometry of
the local problem in this case is shown in figure 2(b). We will refer to regions 1 and 3,
in which the leading-order solution for u varies with θ but not z, as a ‘pseudo-plug’
in order to distinguish them from a rigid plug in which the velocity is constant. The
definitions of the yielded and unyielded zones are as before; however, in this case the
yielded zone will comprise, in general, both ‘partially yielded zones’ (in which regions
1, 2 and 3 are present) and ‘fully yielded zones’ (in which only regions 2 and 3 are
present). The details of the solution are given by Ross (2000), who shows that in the
yielded zone H∗, H and h satisfy

Q = Uh− 1
6

cos θ(3h−H∗)H∗2, (11)

(h−H∗)| cos θ| = 1, (12)

(h−H)2 cos2 θ + k2

[
d

dθ
{H∗2 cos θ}

]2

= 1. (13)

Equations (11), (12) and (13) are the volume flux, pseudo-yield and yield conditions,
respectively, and are equivalent to the corresponding equations derived by Wilson
(1999) (namely, his equation (9), his condition Gyc = 1 and his equation (7), respec-
tively) for pressure-driven thin-film flow of a biviscosity fluid in a non-parallel-sided
symmetric channel. Using (12) to eliminate h from (11) yields

1
3
H∗3 cos θ + 1

2
H∗2S −UH∗ − SU

cos θ
+ Q = 0. (14)

In the special case k = 0 (corresponding to taking the thin-film limit ε → 0 and
then the Bingham limit λ → 0) we have H∗ ≡ H so that region 3 is absent and the
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problem reduces to that when λ = O(1) in the special case λ = 0, while in the special
case k = ∞ (corresponding to taking the Bingham limit λ→ 0 and then the thin-film
limit ε → 0) only regions 2 and 3 are present. Both H∗ and h are independent of k.
Moreover, equations (8) and (9) in the special case λ = 0 are equivalent to (11) and
(12) when H is replaced by H∗, and so the solutions for the free surface h and the
pseudo-yield surface H∗ in the distinguished limit are identical to those for the free
surface h and the yield surface H that are obtained by setting λ = 0 in the solution for
λ = O(1). Of course, this does not mean that other quantities (such as, for example,
the stress) are the same. Setting λ = 0 in (10) confirms that in this case the solution in
the unyielded zone is simply a rigid plug; we shall subsequently find that these occur
only for flow on a rotating cylinder (U 6= 0). Note that, as in the case λ = O(1), H∗,
H and h depend on θ only through cos θ and hence have top-to-bottom symmetry.

4. Stationary cylinder (U = 0) when λ = O(1)

In this section we consider the solution when λ = O(1) as ε → 0 in the special
case U = 0 corresponding to thin-film flow with prescribed volume flux Q round a
stationary cylinder. For ease of comparison with the earlier work on this problem
(and to distinguish between the present results and those for a rotating cylinder which
follow) we present all the results for a stationary cylinder in terms of the local angle to
the horizontal α (defined in § 3) instead of the polar angle θ. To obtain the appropriate
equations from the general ones given in § 3 we set U = 0 and θ = π/2−α and replace
u and Q with −u and −Q respectively. In this case, just as Nusselt (1916a, b) found in
the Newtonian case, the only physically acceptable solution corresponds to a curtain
of fluid falling onto the top (α = 0) of and falling off at the bottom (α = π) of the
cylinder. When a flux Qs of fluid is supplied from above the cylinder a portion Q will
flow round the right-hand side (0 < α < π) and the remainder Qs−Q will flow round
the left-hand side (−π < α < 0) of the cylinder. As Duffy & Wilson (1999) point out,
the fluxes Q and Qs − Q need not be equal, and so the overall flow need not have
left-to-right symmetry. However, without loss of generality we restrict our attention
to flow round the right side of the cylinder in what follows; the corresponding flow
on the left side can then be calculated in the same way with Q replaced by Qs − Q.

Eliminating H between (8) and (9) gives a cubic polynomial equation for h in the
yielded zone, namely

h3 − 3(1− λ)
2 sin α

h2 +
1− λ

2 sin3 α
− 3Q

sin α
= 0. (15)

If we define

K = 1− 2

(1− λ)2
+

12Q sin2 α

(1− λ)3
(16)

then from (15) the only physically acceptable solution for the free surface h is

h =


1− λ
2 sin α

[1 + 2 cos ( 1
3

cos−1 K)], −1 6 K 6 1,

1− λ
2 sin α

[1 + 2 cosh( 1
3

cosh−1 K)], K > 1.

(17)

The yield surface H is then given by (9), so that

H = h− 1

sin α
. (18)
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The edges of the yielded zone are where H = 0. Thus from (15) and (18) the yielded
zone is αe < α < π− αe, where αe (0 6 αe 6 π/2) is given by

αe = sin−1

[(
λ

3Q

)1/2
]
, (19)

and so

h(αe) =

(
3Q

λ

)1/2

. (20)

Thus a yielded zone is present only if Q > λ/3.
In the unyielded zone we have from (10)

u = 1
2
λ sin α(2h− z)z, h =

(
3Q

λ sin α

)1/3

, (21)

as given, for example, by Nusselt (1916a, b).
It can be shown that h takes its minimum value at α = π/2 and increases monoton-

ically away from α = π/2, becoming infinite at α = 0 and α = π. H may have either
a local maximum or a local minimum at α = π/2; Ross (2000) gives further details.
The fluid is always unyielded near α = 0 and α = π.

In the limit Q → 0 the fluid is unyielded everywhere and the flow is described by
(21). In the limit Q→∞ we have αe = (λ/3Q)1/2 + O(Q−3/2) and

H =

(
3Q

sin α

)1/3

− 1 + λ

2 sin α
+ O(Q−1/3), (22)

h =

(
3Q

sin α

)1/3

+
1− λ
2 sin α

+ O(Q−1/3). (23)

These two expansions are non-uniform when α = O(Q−1/2), that is, when α is of the
same order as αe. These non-uniformities are resolved by appropriate inner solutions
in which H increases from zero at α = αe to the O(Q1/3) value given in (22) and h
decreases from the O(Q1/2) value given in (20) at α = αe to the O(Q1/3) value given in
(23).

There are two distinct flow topologies in this case. If Q 6 λ/3 then the flow is
unyielded everywhere (type I), while if Q > λ/3 then there is a yielded zone (type II);
typical examples of these two different flows (with streamlines included) are shown
in figure 3. In particular, figure 3(b) shows that some streamlines lie entirely in the
unyielded region whereas others enter and exit the yielded region, confirming that the
yield surface is not a material surface.

Figure 4 shows H and h plotted as functions of α/π for a range of values of λ
when Q = 1. Note that only in the special case λ = 0 does the yielded zone extend
all the way around the cylinder. In the special case λ = 1 the ‘yield surface’ H merely
represents a surface in the fluid on which the stress takes the yield value of unity and
the fluid undergoes no material change there since the viscosity is the same in the
yielded and unyielded regions. Evidently h and h′ are continuous but h′′ is, in general,
discontinuous at α = αe; this discontinuity in h′′ accounts for the lack of smoothness
of the free surface at α = αe just evident in figure 3(b) and in figure 4 in the case
λ = 1/10. Ross (2000) gives further details.

The solution in the special case λ = 0 is of particular interest. In this case the
velocity in region 1 is simply u1 = H2 sin α/2, which varies with α but not z, and
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(a) (b)
w = 3/50
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1/100

Free surface z = h (w = Q)
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Figure 3. Leading-order solutions for flow round a large stationary cylinder (including typical
streamlines on which the stream function ψ is constant) illustrating (a) a flow of type I when
Q = 2/25 and λ = 1/4, and (b) a flow of type II when Q = 1 and λ = 1/4.
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Figure 4. Plots of H (lower curves) and h (upper curves) as functions of α/π when Q = 1 for λ = 0,
1/100, 1/10, 1/2 and 1. Note that the solutions for h in the cases λ = 0 and λ = 1/100 are virtually
indistinguishable at this scale.

αe = 0, that is, the unyielded zone is absent. We note that

H = (2Q)1/2 − 2
3
Qα+ O(α2), (24)

h =
1

α
+ (2Q)1/2 + 1

6
(1− 4Q)α+ O(α2) (25)
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as α→ 0,

H = (2Q)1/2 − 2
3

sin αQ+ O(Q3/2), (26)

h =
1

sin α
+ (2Q)1/2 − 2

3
sin αQ+ O(Q3/2) (27)

as Q→ 0, and (22) and (23) with λ = 0 hold as Q→∞.

5. Stationary cylinder (U = 0) when k = O(1)

In this section we consider the solution in the distinguished limit λ→ 0 and ε→ 0
in which k = ε/λ = O(1) in the special case U = 0, corresponding to thin-film flow
with prescribed volume flux Q round a stationary cylinder. From (11)–(13) in the
yielded zone H∗, H and h satisfy

Q = 1
6

sin α(3h−H∗)H∗2, (28)

(h−H∗) sin α = 1, (29)

(h−H)2 sin2 α+ k2

[
d

dα
{H∗2 sin α}

]2

= 1. (30)

Using (29) to eliminate h from (28) yields

Q = 1
3
H∗3 sin α+ 1

2
H∗2. (31)

The edges of the yielded zone are where H∗ = 0, and are at α = α∗e and α = π− α∗e ,
where α∗e is identical to αe in the case λ = 0. All the results for H , h and αe(= 0) in
the case λ = 0 given in § 4 apply directly to H∗, h and α∗e(= 0) in the present problem.
Solving (30) yields

H = h− 1

sin α

[
1−

(
k

d

dα
{H∗2 sin α}

)2
]1/2

, (32)

where, from (31),
d

dα
{H∗2 sin α} =

(3 +H∗ sin α)H∗2 cos α

3(1 +H∗ sin α)
. (33)

Note that H∗ = H when α = π/2, and so region 3 is always absent at this special
value of α.

Although H∗ and h always extend from α = 0 to α = π, the same is not necessarily
true for H; specifically, we find that if Q > 1/2k then the yield surface H meets the
free surface h at α = αe and α = π − αe, where αe (0 6 αe 6 π/2) is the (unique)
solution of kd{H∗2 sin α}/dα = 1. If Q 6 1/2k then

H =


1

α
[1− (1− 4k2Q2)1/2] + (2Q)1/2

[
1− 16k2Q2

3(1− 4k2Q2)1/2

]
+ O(α), Q <

1

2k
,

1

α
− 1

k1/4

(
8

3α

)1/2

+
1

k1/2
+ O(α1/2), Q =

1

2k
,

(34)
as α→ 0, while if Q > 1/2k then

H = h(αe)− (α− αe)
1/2

sin αe

[
−2k

d2

dα2
{H∗2 sin α}

]1/2

α=αe

+ O(α− αe) (35)

as α→ α+
e . All three surfaces always have a global minimum at α = π/2.
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Free surface z = h

Yield surface z = H

13

2

(a)

Cylinder z = 0

Pseudo-yield surface z = H*

(b)
Free surface z = h

Yield surface
 z = H
α = p – αe

Pseudo-yield surface z = H*

Cylinder z = 0

1

2

3

α = αe

Figure 5. Leading-order solutions for flow round a large stationary cylinder in the distinguished
limit described in § 5 illustrating (a) a flow of type II1 when Q = 1 and k = 9/20, and (b) a flow of
type II2 when Q = 1 and k = 2.

There are two distinct flow topologies in this case. If Q 6 1/2k then there is only a
partially yielded zone (type II1), while if Q > 1/2k then there are a partially yielded
zone and two fully yielded zones (type II2); typical examples of these two different
flows are shown in figure 5. In particular, figure 5(a) shows that fluid particles start
(at α = 0) and finish (at α = π) in the pseudo-plug (regions 1 and 3), but may pass
through the yielded region (region 2), whilst figure 5(b) shows that all particles start
and finish in region 3, but must, in general, pass through either region 1 or region 2.
Figure 6 shows H∗, H and h plotted as functions of α/π for a range of values of k
when Q = 1.

In the limit k → 0 we have H = H0 + k2H2 + O(k4), where H0 = H∗ and

H2 =
1

2 sin α

(
d

dα
{H∗2 sin α}

)2

. (36)

In particular, H2 = O(α−1) as α → 0 and so this expansion is non-uniform when
α = O(k2). This non-uniformity is resolved by an appropriate inner solution near
α = 0; Ross (2000) gives details of this.

In the limit k →∞ we have

αe =
π

2
− 3(1 +H∗0 )

H∗20 (3 +H∗0 )

1

k
+ O(k−2), (37)

where H∗0 = H∗(π/2), and the behaviour of H∗, H and h in the partially yielded zone
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h
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α /p

Figure 6. Plots of H∗, H and h as functions of α/π when Q = 1 for k = 1/10, 1/4, 1/2, 3/4, 1, 5/2,
10 and 50. Note that H∗ and h are independent of k.

is given by H∗ = H∗0 + O(k−2),

H = 1 +H∗0 −
1−

(
1
2
π− α

1
2
π− αe

)2
1/2

+ O(k−2) (38)

and h = 1 +H∗0 + O(k−2). Thus at leading order h and H∗ are constant (independent
of α) whereas H has a semi-elliptical shape with width O(k−1) and unit height.

In the limit Q→ 0 we find that H∗ and h are given by (26) and (27) respectively and
that H∗ differs from H only at O(Q2). The solution for H (but not that for H∗ or h)
is non-uniform when α = O(Q1/2). This non-uniformity is resolved by an appropriate
inner solution near α = 0.

In the limit Q → ∞ we find that H∗ and h are given by (22) and (23) with λ = 0
respectively. Furthermore, αe = π/2 − 31/3k−1Q−2/3 + O(Q−1/2), and the behaviour of
H∗, H and h in the partially yielded zone is given by H∗ = (3Q)1/3 − 1/2 + O(Q−1/3),

H = (3Q)1/3 +
1

2
−
1−

(
1
2
π− α

1
2
π− αe

)2
1/2

+ O(Q−1/3) (39)

and h = (3Q)1/3 + 1/2 + O(Q−1/3). Thus to first order H∗ and h are constant (inde-
pendent of α) whereas H has a semi-elliptical shape with width O(Q−2/3) and unit
height.

6. Rotating cylinder (U 6= 0) when λ = O(1)

In this section we consider the solution when λ = O(1) as ε→ 0 in the general case
U 6= 0 corresponding to thin-film flow with volume flux Q round a rotating cylinder.
In this case, just as Duffy & Wilson (1999) found in the Newtonian case, there are
two physically acceptable solutions, one corresponding to a film of finite non-zero
thickness everywhere (the solution studied in the Newtonian case by Moffatt 1977)
and another corresponding to a curtain of fluid falling onto the top of and off at
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the bottom of the cylinder (studied in the Newtonian case by Duffy & Wilson 1999).
In this work we shall be concerned exclusively with the former solution. Note that
this solution is absent in the special case U = 0 treated earlier, and so the following
results do not, in general, reduce to those given in § 4 and § 5 in the limit U → 0.

Eliminating H from (8) by using (9) gives a cubic polynomial equation for h in the
yielded zone, namely

h3 − 3(1− λ)
2| cos θ| h

2 − 3U

cos θ
h+

1− λ
2| cos θ|3 +

3Q

cos θ
= 0. (40)

If we define

K =
1

|M|3/2 [(1− λ)3 − 2(1− λ)(1− 3U cos θ)− 12SQ cos2 θ], (41)

where M = (1− λ)2 + 4U cos θ, then from (40) the appropriate solution for the free
surface h is

h =
1− λ
2 cos θ

+
M1/2

cos θ
cos ( 2

3
π− 1

3
cos−1 K), −1 6 K 6 1, (42)

on the right (S = 1), and

h =



1− λ
2| cos θ| +

|M|1/2
| cos θ| sinh ( 1

3
sinh−1 K), M 6 0,

1− λ
2| cos θ| +

M1/2

| cos θ| cos ( 1
3

cos−1 K), M > 0 and − 1 6 K 6 1,

1− λ
2| cos θ| +

M1/2

| cos θ| cosh ( 1
3

cosh−1 K), M > 0 and K > 1,

(43)

on the left (S = −1). The yield surface H is given by (9). Since H and h do not
have left-to-right symmetry, hereafter the subscripts R and L will be used to denote
quantities on the right (S = 1) and left (S = −1), respectively, when necessary. The
solution (42) is physically sensible only if K > −1 throughout the yielded zone, and
in particular if K > −1 at θ = 0, that is, if Q 6 QC, where

QC = 1
12

[(1− λ)3 − 2(1− λ)(1− 3U) + [(1− λ)2 + 4U]3/2]. (44)

It may be shown that h′ 6 0 for 0 6 θ 6 π, so that τ takes its maximum value of h(0)
at z = 0, θ = 0, and hence there can be a region of yielded fluid only if h(0) > 1.
From (42) it is clear that h(0) is maximized when Q = QC (corresponding to K = −1),
and a necessary condition for yielded zones to exist is therefore U > λ. For U 6 λ
the flow is unyielded everywhere.

As before, the edges of the yielded zone are where H = 0. Thus from (9) and (40)
the yielded zones on the right and left are given by |θ| < θeR and |π− θ| < π− θeL,
respectively, where θeR (0 6 θeR 6 π/2) and θeL (π/2 6 θeL 6 π) are given by

θe = cos−1

[
SU

2Q

(
1 +

{
1− 4SλQ

3U2

}1/2
)]

, (45)

and so

h(θe) =
3SU

2λ

(
1−

{
1− 4SλQ

3U2

}1/2
)
, (46)
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with the appropriate choice for S . Thus from (45) a yielded zone is present on the
right only if

Q 6
3U2

4λ
, Q > 1

2
U, Q > QR, (47)

where

QR = U − 1
3
λ. (48)

Similarly, from (45) a yielded zone is present on the left only if Q > QL, where

QL = U + 1
3
λ > QR. (49)

From (45) we find that θeR > π− θeL (with equality when λ = 0) and so the extent of
the yielded zone is always greater on the right than on the left when λ 6= 0.

From (10) h in the unyielded zone satisfies

h3 − 3U

λ cos θ
h+

3Q

λ cos θ
= 0. (50)

If we define

KN = −3SQ

2

(
λ| cos θ|
U3

)1/2

(51)

then from (50) the appropriate solution for h is

h = 2

(
U

λ cos θ

)1/2

cos ( 2
3
π− 1

3
cos−1 KN), −1 6 KN 6 0, (52)

on the right (S = 1), and

h = 2

(
U

λ| cos θ|
)1/2

sinh ( 1
3

sinh−1 KN), KN > 0, (53)

on the left (S = −1). If the fluid is unyielded everywhere then (52) is physically
sensible only if Q 6 QN, where QN = 2U3/2/3λ1/2, in agreement with Moffatt’s (1977)
result in the Newtonian case.

It can be shown that h takes its maximum value at θ = 0 and decreases mono-
tonically away from θ = 0 to its minimum value at θ = π. H always has a local
maximum at θ = 0 but may have either a local maximum or a local minimum at
θ = π; Ross (2000) gives further details. The flow is always unyielded near θ = ±π/2
where h = Q/U.

As we have seen, yielded zones can exist only for U > λ and in this case the
strongest restrictions on Q are Q > QR, Q 6 QC and Q > QL. For U > λ we have
QR < QC < QN, with QR = QC = QN = 2λ/3 when U = λ. There are therefore three
distinct flow topologies. If U 6 λ and Q 6 QN or U > λ and Q 6 QR then the flow
is unyielded everywhere (type I), if U > λ and QR < Q 6 min(QC, QL) then there is a
yielded zone on the right but not on the left (type II), while if U > λ and QL < Q 6 QC

then there are yielded zones on both the right and left (type III); typical examples
of these three different flows (with streamlines included) are shown in figure 7. Note
that these definitions differ from those in § 4. Figure 8 shows a plot of a typical (U,Q)
parameter plane for a fixed value of λ (in this case λ = 1/2); in particular it shows
how the curves Q = QN, Q = QR, Q = QL and Q = QC divide the parameter plane
into a region where no solution exists and regions in which the three different types
of flow occur.

Figure 9 shows H and h plotted as functions of θ/π for a range of values of λ
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1/4

U

Free surface z = h (w = Q)

Cylinder z = 0 (w = 0)

(a) (b) w = 29/20

1

7/20
h = heR

U

Cylinder z = 0 (w = 0)
Free surface z = h (w = Q)

Yield surface
z = H

h = –heR

(c)

U

h = heL

h = heR

w = 16/5

9/5

1/2

h = –heR

Yield surface z = H

Free surface z = h (w = Q)
Cylinder z = 0 (w = 0)

Yield surface z = H

h = –heL

Figure 7. Leading-order solutions for flow round a large rotating cylinder (including typical
streamlines on which the stream function ψ is constant) illustrating (a) a flow of type I when
Q = 9/10, λ = 1/2 and U = 1, (b) a flow of type II when Q = 7/4, λ = 1/2 and U = 8/5, and (c) a
flow of type III when Q = 21/5, λ = 1/2 and U = 3.

when U = 19/10 and Q = 2. Evidently, as in the case U = 0 discussed in § 4, h and h′
are continuous but h′′ is, in general, discontinuous at θ = θe.

Also of interest is the formation of corners in both H and h at θ = 0 when
Q = QC, shown in figure 9. When Q = QC we find that H and h are given by
H = H0 ∓ Aθ +H2θ

2 + O(θ3) and h = h0 ∓ Aθ + h2θ
2 + O(θ3) near θ = 0, where

A =

[
h3

0 + λ− 1

3(2h0 + λ− 1)

]1/2

, h2 =
3h2

0 − 2A2

6(2h0 + λ− 1)
, (54)

and where from (9) and (42) we have H0 = h0 − 1, H2 = h2 − 1/2 and

h0 = 1
2
[1− λ+ ((1− λ)2 + 4U)1/2], (55)

showing that the profiles for both H and h have a corner at θ = 0 with internal angle
π− 2A in this case. As U → λ+ we have θeR → 0+, so that the extent of the yielded
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Figure 8. Plot of the (U, Q) parameter plane for the case λ = 1/2 showing how the curves Q = QN,
Q = QR, Q = QL and Q = QC divide the parameter plane into regions in which either there is no
solution or the flow is of type I, II or III.
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Figure 9. Plots of H (lower curves) and h (upper curves) as functions of θ/π when U = 19/10 and

Q = 2 for λ = 0, 1/10, 3/10 (Q = QL), 1/2 and 0.714225 (Q = QC).
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Figure 10. Plots of A and h′(θeR) as functions of U for a range of values of λ. The curve
[U/3(1 +U)]1/2 and the constant value 6−1/2 are shown with dashed lines.
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Figure 11. Plot of the maximum supportable weight on the cylinder Wmax as a function of U for a
range of values of λ. The constant value WM ' 4.44272 is shown with a dashed line.

zone on the right decreases to zero. Both A and h′(θeR) take the value [U/3(1 +U)]1/2

at U = λ. When U 6 λ and Q = QN (in which case the flow is unyielded everywhere)
h has a corner at θ = 0 with A = (U/6λ)1/2, in agreement with the result for a
Newtonian fluid (see, for example, Duffy & Wilson 1999). Hence for λ 6= 1 there is a
finite jump in the value of A from 6−1/2 to [U/3(1 +U)]1/2 at U = λ. Figure 10 shows
A and h′(θeR) plotted as functions of U for a range of values of λ and, in particular,
shows this jump. The special case λ = 0 is discussed later.

One property of considerable practical interest is the maximum weight of fluid that
can be supported on the rotating cylinder (first considered by Moffatt 1977 in the
Newtonian case). To leading order the weight of fluid on the cylinder is given by

W (λ,U,Q) =

∫ 2π

0

h(θ) dθ. (56)

Just as Moffatt (1977) found in the Newtonian case W increases monotonically
(almost, but not exactly, linearly) with Q until it reaches the maximum supportable
weight Wmax. This maximum weight is given by Wmax = W (λ,U,QN) when U 6 λ
and Wmax = W (λ,U,QC) when U > λ. Figure 11 shows a plot of Wmax as a function
of U for a range of values of λ; in particular it shows that, for a given value of
U, Wmax for a viscoplastic material (λ < 1) always exceeds Wmax for a Newtonian
fluid (λ = 1), and that Wmax is greatest for a Bingham material (λ = 0). Moreover,
the maximum weight satisfies Wmax 6 WM when U 6 λ (i.e. when the flow is of
type I) and Wmax > WM when U > λ (i.e. when the flow is of type II or III), where
WM ' 4.44272 is the (corrected) value obtained by Moffatt (1977) (see, for example,
Duffy & Wilson 1999).

The special case λ = 0 is again of particular interest. In this case the velocity in
region 1 is simply u1 = U − H2 cos θ/2, which again varies with θ but not z. From
(45) we have simply

θe = cos−1

[
SU

Q

]
, (57)

and thus θeR = π − θeL and so the extents of the yielded zones on the right and the
left are the same. From (44), (48) and (49) we obtain

QC = 1
12

[6U − 1 + (1 + 4U)3/2], QR = QL = U. (58)
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Figure 12. Plot of the (U, Q) parameter plane for the case λ = 0 showing how the curves
Q = QR = QL and Q = QC divide the parameter plane into regions in which either there is no
solution or the flow is of type I or III.

In the unyielded zone we have simply u = U and h = Q/U, that is, a rigid plug
of uniform thickness Q/U moving with constant speed U. Since QR = QL flows of
type II do not occur in this case. Figure 12 shows how the curves Q = QR = QL and
Q = QC divide the (U, Q) parameter plane in this case into a region where no solution
exists and regions in which flows of type I and III occur. Note that h′(θe) = 0,

H ′(θe) = −S sin θe

cos2 θe

= −SQ
U2

(Q2 −U2)1/2, (59)

and

H ′′(θe) =
Q

U5
(U4 − SQU2 − 2Q2U2 + SQ3). (60)

Figure 10 includes a plot of A as a function of U when λ = 0. Figure 11 includes a
plot of Wmax as a function of U when λ = 0; in particular, as U → 0 the solution
approaches a rigid plug of thickness unity all the way round the cylinder and so
Wmax → 2π.

7. Rotating cylinder (U 6= 0) when k = O(1)

In this section we consider the solution in the distinguished limit λ→ 0 and ε→ 0
in which k = ε/λ = O(1), in the general case U 6= 0 corresponding to thin-film flow
with volume flux Q round a rotating cylinder. In the yielded zone H∗, H and h satisfy
(11)–(13), and using (12) to eliminate h from (11) yields (14). The edges of the yielded
zone are where H∗ = 0, and are given by |θ| = θ∗eR and |π− θ| = π− θ∗eL, where θ∗eR

and θ∗eL are identical to θeR and θeL in the case λ = 0. All the results for H , h and θe

in the case λ = 0 given in § 6 apply directly to H∗, h and θ∗e in the present problem.
Solving (13) yields

H = h− 1

| cos θ|
[

1−
(
k

d

dθ
{H∗2 cos θ}

)2
]1/2

, (61)
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where, from (14),

d

dθ
{H∗2 cos θ} =

H∗ sin θ (H∗3 cos2 θ + 3SH∗2 cos θ − 3UH∗ cos θ − 6SU)

3 cos θ (U − SH∗ −H∗2 cos θ)
, (62)

except at θ = 0 in the case Q = QC. As in the case λ = O(1) considered in § 6, H∗, H
and h do not have left-to-right symmetry. Note that H∗ = H at θ = 0 for Q 6= QC, at
θ = π and at the edges of the yielded zones, and so region 3 is always absent at these
special values of θ.

When QR < Q < QC there are two critical values of k, denoted by kcritR and
kcritL (> kcritR), such that if k > kcritR then H meets h at θ = ±θe1R and θ = ±θe2R

(0 6 θe1R 6 θe2R 6 π/2) on the right, and if k > kcritL then H meets h at θ = ±θe1L and
θ = ±θe2L (π/2 6 θe2L 6 θe1L 6 π) on the left, where θe1 and θe2 are the appropriate
solutions of

k
d

dθ
{H∗2 cos θ} = 1. (63)

As θ → θ∗e from below (above) on the right (left) respectively we have

H = H1(θ − θ∗e ) +H2(θ − θ∗e )2 + O(θ − θ∗e )3, (64)

where H1 = H∗1 = H∗′(θ∗e ) is given by (59) and

H2 = H∗2 +
2Q3k2

U7
(Q2 −U2)2, (65)

where H∗2 = H∗′′(θ∗e )/2 is given by (60). If k > kcrit then

H = h(θe1)− S(−S(θ − θe1))
1/2

cos θe1

[
2Sk

d2

dθ2
{H∗2 cos θ}

]1/2

θ=θe1

+ O(θ − θe1) (66)

as θ → θe1 from below (above) on the right (left) respectively, and

H = h(θe2)− S(S(θ − θe2))
1/2

cos θe2

[
−2Sk

d2

dθ2
{H∗2 cos θ}

]1/2

θ=θe2

+ O(θ − θe2) (67)

as θ → θe2 from above (below) on the right (left) respectively.
There are four distinct flow topologies in this case. If Q 6 QR then the flow is of

type I (a rigid plug of thickness Q/U), if QR < Q < QC and k < kcritR then the flow
is of type III with only partially yielded zones on both the right and left (type III1),
if QR < Q < QC and kcritR < k < kcritL then the flow is of type III with both partially
and fully yielded zones on the right but only a partially yielded zone on the left
(type III2), while if QR < Q < QC and k > kcritL then the flow is of type III with
both partially and fully yielded zones on both the right and left (type III3); typical
examples of these different flows of type III are shown in figure 13. Figure 14 shows
H∗, H and h plotted as functions of θ/π for a range of values of k for a value of Q
satisfying QR < Q < QC.

In the special case Q = QC we find that if k > kcritR (= 1/2H∗0A when Q = QC)
then H meets h at θ = ±θe1R (0 6 θe1R 6 π/2) on the right, where θe1R is the
(unique) solution of (63); the behaviour on the left is as before. Note that, unlike
when k > kcritR for QR < Q < QC, H meets h only twice (as opposed to four times)
when k > kcritR for Q = QC. For k < kcritR H is given by

H = 1 +H∗0 − [1− (2H∗0Ak)
2]1/2 ∓ Bθ + O(θ2) (68)



Flow of a viscoplastic material round a cylinder 329

(a)

Pseudo-yield
surface z = H*

h = h*
eL

h = h*
eR Pseudo-yield

surface z = H*

U

Yield surface z = H

Free surface z = h

Yield surface z = H

Cylinder z = 0

(b)

Pseudo-yield
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eL h = h*
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(c)

Pseudo-yield
surface z = H*

h = h*
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Yield surface z = H
Free surface z = h

Yield surface z = H

Cylinder z = 0
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h = he1R

h = he2L

h = he1L

Figure 13. Leading-order solutions for flow round a large rotating cylinder in the distinguished
limit described in § 7 illustrating (a) a flow of type III1 when U = 2, Q = 3 and k = 5/4, (b) a flow
of type III2 when U = 2, Q = 3 and k = 3/2, and (c) a flow of type III3 when U = 2, Q = 3 and
k = 3.
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Figure 14. Plots of H∗, H and h as functions of θ/π when U = 2 and Q = 3 (so that QR < Q < QC)
for k = 2/5, 7/10, 1, 5/4, 13/10, 27/20, 3/2, 2, 5/2, 11/4, 3 and 7/2. Note that H∗ and h are
independent of k.
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Figure 15. Plots of H∗, H and h as functions of θ/π when U = 2 and Q = 19/6 (= QC) for k = 3/10,
2/5, 1/2, 0.566947 (= kcritR), 13/20, 5/4, 7/4, 2, 9/4, 5/2 and 3. Note that H∗ and h are independent
of k.

near θ = 0, where

B = A− 2H∗0Ak2(H∗20 − 2A2 − 4H∗0H∗2 )

[1− (2H∗0Ak)2]1/2
, (69)

showing that the profile for H has a corner at θ = 0 with internal angle π − 2B in
this case. In particular, B → ∞ as k → k−critR, that is, the corner becomes a cusp as it
approaches the free surface. Furthermore (unlike in the case QR < Q < QC) H 6= H∗
at θ = 0 for Q = QC. Figure 15 shows H∗, H and h plotted as functions of θ/π for a
range of values of k in the case Q = QC.

In the limit k → 0 we have H = H0 + k2H2 + O(k4), where H0 = H∗ and

H2 =
1

2| cos θ|
(

d

dθ
{H∗2 cos θ}

)2

. (70)
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In contrast to the corresponding small-k solution in the case U = 0 described in § 5
this solution is uniform.

In the limit k →∞ when QR < Q < QC we have

θe1R =
3(U −H∗0 −H∗20 )

H∗0 (H∗30 + 3H∗20 − 3UH∗0 − 6U)

1

k
+ O(k−2), (71)

where H∗0 = H∗(0), and the behaviour of H∗, H and h in the partially yielded zone
|θ| 6 θe1R is given by H∗ = H∗0 + O(k−2),

H = 1 +H∗0 −
[

1−
(

θ

θe1R

)2
]1/2

+ O(k−2) (72)

and h = 1 +H∗0 +O(k−2), analogous to the corresponding large-k solution in the case
U = 0 described in § 5. Similarly when QR < Q 6 QC we also have

θe1L = π− 3(U +H∗0 +H∗20 )

H∗0 (H∗30 + 3H∗20 + 3UH∗0 + 6U)

1

k
+ O(k−2), (73)

where H∗0 = H∗(π), and the behaviour of H∗, H and h in the partially yielded zone
|π− θ| 6 π− θe1L is given by H∗ = H∗0 + O(k−2),

H = 1 +H∗0 −
[

1−
(

π− θ
π− θe1L

)2
]1/2

+ O(k−2) (74)

and h = 1 + H∗0 + O(k−2), again analogous to the corresponding large-k solution in
the case U = 0 described in § 5. Moreover,

θe2 = θ∗e − cos3 θ∗e
2 sin2 θ∗e

1

k
+ O(k−2), (75)

and the behaviour of H∗, H and h in the partially yielded zones θe2R 6 θ 6 θ∗eR and
θ∗eL 6 θ 6 θe2L is given by H∗ = O(k−1),

H =
1

| cos θ∗e |

1−
(

1−
{
θ∗e − θ
θ∗e − θe2

}2
)1/2

+ O(k−1) (76)

and h = 1/| cos θ∗e |+O(k−2). Thus at leading order h and H∗ are constant (independent
of θ) whereas H has a semi-elliptical shape with width O(k−1) and height 1/| cos θ∗e |.
The solution for H (but not for H∗ or h) is non-uniform when θ − θ∗e = O(k−2). This
non-uniformity is resolved by an appropriate inner solution near θ = θ∗e satisfying
H ′(θ∗e ) = H∗′(θ∗e ).

8. Conclusions
In this paper we considered the steady two-dimensional thin-film flow of a visco-

plastic material, modelled as a biviscosity fluid with a yield stress, round the outside
of a large horizontal stationary or rotating cylinder. In both cases we determined the
leading-order solution both when λ = O(1) as ε → 0 and in the distinguished limit
λ → 0 and ε → 0 in which k = ε/λ = O(1). When λ = O(1) the flow consists, in
general, of a region of yielded fluid (region 2) adjacent to the cylinder and a region
of unyielded fluid (region 1) adjacent to the free surface, separated by z = H . In the
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distinguished limit the flow consists, in general, of a region of yielded fluid (region 2)
adjacent to the cylinder whose stress is O(1) above the yield stress and a pseudo-plug
region adjacent to the free surface, in which the leading-order azimuthal component
of velocity varies azimuthally but not radially, separated by z = H∗; the pseudo-plug
is itself, in general, divided by z = H into a region of yielded fluid (region 3) whose
stress is O(ε) above the yield stress and a region of unyielded fluid (region 1) adjacent
to the free surface.

The solution for a stationary cylinder represents a curtain of fluid with prescribed
volume flux Q falling onto the top of and off at the bottom of the cylinder. If Q 6 λ/3
then the flow is unyielded everywhere (type I), but when Q > λ/3 there is a yielded
zone (type II). In the distinguished limit region 2 always extends all the way round
the cylinder, but region 1 does so only when Q 6 1/2k.

For a rotating cylinder a solution representing a film with finite thickness everywhere
is possible only when the flux is sufficiently small. If U 6 λ and Q 6 QN or U > λ
and Q 6 QR then the flow is unyielded everywhere (type I), if U > λ and QR < Q 6
min(QC, QL) then there is a yielded zone on the right but not on the left (type II),
while if U > λ and QL < Q 6 QC then there are yielded zones on both the right and
left (type III). At the critical maximum flux (Q = QN when U 6 λ and Q = QC when
U > λ) the maximum supportable weight of fluid on the cylinder is attained and H∗,
H and h all have a corner at θ = 0. In the distinguished limit we have QR = QL (so
that flows of type II do not occur) and there are rigid plugs (absent in the stationary
case) near the top and bottom of the cylinder.
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